The dairy industry struggles to maintain consumer attention in the midst of declining fluid milk sales. Current trends create an opportunity to incorporate plantbased proteins with milk to produce a high-protein, multisourced, functional food product.
Plant-based proteins, such as those in peas, can be challenging to use in food systems because of their low solubility and undesirable off-flavors. Casein micelles have unique structural properties that allow for interactions with small ions and larger macromolecules that aid in their noteworthy ability as a nanovehicle for hydrophobic compounds.
The objective of this study was to use the inherent structure of the casein micelle along with common dairy processing equipment to create a stable colloidal dispersion of casein micelles with pea protein to improve its solubility in aqueous solutions.
We created 3 blends with varying ratios of casein-to-pea protein (90:10, 80:20, 50:50). We subjected the mixtures to 3 cycles of homogenization using a bench-top GEA 2-stage homogenizer at 27,580 kPa maintained at 4°C, followed by pasteurization at 63°C for 30 min. The resulting blends were homogeneous liquids with increased stability due to the lack of protein precipitation.
Further protein analysis by HPLC and AA sequencing revealed that vicilin, an insoluble storage protein, was the main pea protein incorporated within the casein micelle structure. These results supported our hypothesis that low-temperature homogenization can successfully be used to create a colloidal dispersion with increased stability, in which insoluble plant-based proteins may be incorporated with casein micelles in an aqueous solution.
Additionally, 3-dimensional microscope images of the blends indicated a noticeable difference between the surface roughness upon addition of pea protein to the casein micelle matrix. This research highlights a promising application for other plant-based proteins to be used within the dairy industry to help drive future